Lecture #12 Overview

Angle Modulation: Phase Modulation and Frequency Modulation

PM and FM Signal Representation

Phase Modulation and Frequency Modulation are special cases of Angle Modulated signalling. In angle modulated signalling the complex envelope is

$$g(t) = A_c e^{j\theta(t)}$$

- Solution Note that this is in polar form so we can immediately say what are the amplitude modulation R(t) and the phase modulation $\theta(t)$
- The amplitude modulation is

$$R(t) = |g(t)| = A_c = \text{constant}$$

The phase modulation is simply $\theta(t)$ and for angle modulated signals is a linear function of the modulating signal m(t).

PM & FM Signals Representation (cont.)

The resulting angle modulated signal is

$$s(t) = \Re\{A_c e^{j\theta(t)} e^{j\omega_c t}\} = A_c \cos[\omega_c t + \theta(t)]$$

So For PM the phase is directly proportional to the modulation (or message signal amplitude)

$$\theta(t) = k_p m(t)$$

where the constant k_p is the phase sensitivity having units of radians per volt (if m(t) is a voltage waveform).

So For FM the phase is proportional to the integral of m(t).

$$\theta(t) = k_f \int_{-\infty}^t m(\sigma) d\sigma$$

where the frequency deviation constant k_f has units of radians per volt-second.

FM on a PM Signal and Vice-Versa

If a PM signal is modulated by $m_p(t)$ then there is also FM on the signal corresponding to a different modulation waveshape

$$m_f(t) = \frac{k_p}{k_f} \left[\frac{dm_p(t)}{dt} \right]$$

Solution If a FM signal is modulated by $m_f(t)$ then the corresponding phase modulation on this signal is

$$m_p(t) = \frac{k_f}{k_p} \int_{-\infty}^t m_f(\sigma) d\sigma$$

So, a FM signal can be generated using a circuit with an integrator and a phase modulator and a PM signal can be generated using a circuit with a differentiator and a frequency modulator.

Instantaneous Frequency

If a bandpass signal is represented by

$$s(t) = R(t) \cos \psi(t)$$

where $\psi(t) = \omega_c t + \theta(t)$, then the instantaneous frequency (hertz) of s(t) is

$$f_i(t) = \frac{1}{2\pi}\omega_i(t) = \frac{1}{2\pi} \left[\frac{d\psi(t)}{dt} \right] = \frac{1}{2\pi} \left[\omega_c + \frac{d\theta(t)}{dt} \right] = f_c + \frac{1}{2\pi} \left[\frac{d\theta(t)}{dt} \right]$$

Instantaneous Frequency cont.

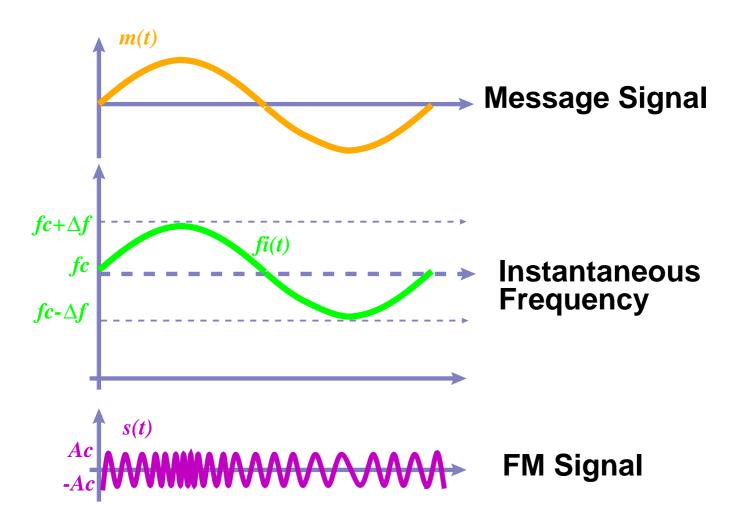
Thus, for the case of FM, the instantaneous frequency is given by

$$f_i(t) = \frac{1}{2\pi} \frac{d(2\pi f_c t + k_f \int_{-\infty}^t m(\sigma) d\sigma)}{dt} = f_c + \frac{1}{2\pi} k_f m(t)$$

That is, the instantaneous frequency of a FM signal varies about the carrier f_c in a manner proportional to the modulating signal m(t)

This is the fundamental principle behind FM.

Fundamental Principle of FM



More Frequency Stuff...

The frequency deviation from the carrier frequency, at any given time, is

$$f_d(t) = f_i(t) - f_c = \frac{1}{2\pi} \left[\frac{d\theta(t)}{dt} \right]$$

The peak frequency deviation is

$$\Delta F = \max\left\{\frac{1}{2\pi}\left[\frac{d\theta(t)}{dt}\right]\right\}$$

where ΔF is positive.

For FM signalling the peak frequency deviation is related to the peak modulating voltage by

$$\Delta F = \frac{1}{2\pi} k_f V_p$$
 where $V_p = \max[m(t)]$

Further Observations for FM Signals

- ♦ An increase in the amplitude, V_p , of m(t) will increase ΔF
- An increase in the amplitude, V_{p} of m(t) will increase the bandwidth of the FM signal.
- An increase in the amplitude, V_p of m(t) will not increase the average power level of the FM signal which will remain at $A_c^2/2$.
- So That is, spectral components will appear further and further away from f_c and spectral components near f_c will decrease in magnitude (since the total power remains constant).
- Compare with AM signalling...

More Phase Stuff...

The peak phase deviation may be defined by $\Delta \theta = \max[\theta(t)]$

which, for PM, is related to the peak modulating voltage V_p by

$$\Delta \theta = k_p V_p$$

where $V_p = \max[\theta(t)]$